Green Synthesis of Silver Nanoparticles Using Cyanobacteria and Evaluation of their Photocatalytic and Antimicrobial Activity

Article Preview

Abstract:

Nowadays, green and efficient synthetic strategies have been gaining great interest for the synthesis of nanoparticles. In this study, the biosynthesis of silver nanoparticles and its photocatalytic activity for photodegradation of organic dye and antimicrobial property was studied. The initial syntheses of Ag nanoparticles were characterized by UV–Vis spectrophotometer and showed the surface plasmon resonance band at 430-450 nm. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) study showed evidence that proteins are possible reducing agents. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). SEM and TEM studies revealed the synthesized AgNPs to be spherical. The AgNPs exhibited photocatalytic activity for photodegradation of organic dye such as Methylene Blue. Approximately 18% degradations of methylene blue within 4 h was observed with biosynthesized Ag nanoparticles in the photocatalytic degradation process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-127

Citation:

Online since:

March 2016

Export:

Price:

* - Corresponding Author

[1] Lin, Z. Xu, Y. Zhen, Z. Fu, Y. Liu, Y. Li, W. Luo, C. Ding, A. Zhang, D, Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting, Bioresour. Technol. 190 (2015) 82-88.

DOI: 10.1016/j.biortech.2015.04.068

Google Scholar

[2] Ni, S. Ni, J. Yang N. Wang, J, Effect of magnetic nanoparticles on the performance of activated sludge treatment system, Bioresour. Technol. 143 (2013) 555-561.

DOI: 10.1016/j.biortech.2013.06.041

Google Scholar

[3] Nazeruddin, G.M. Prasad, N.R. Waghmare, S.R. Garadkar, K.M. Mulla, I. S, Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity, J. Alloys Compd. 583 (2014) 272-277.

DOI: 10.1016/j.jallcom.2013.07.111

Google Scholar

[4] Tao, A. Sinsermsuksakul P. Yang P. D, Tunable plasmonic lattices of silver nanocrystals, Nat. Nanotechnol. 2 (2007) 435-440.

DOI: 10.1038/nnano.2007.189

Google Scholar

[5] Chen, M. Kumar, D. Yi, C.W. Goodman D. W, The promotional effect of gold in catalysis by palladium-gold, Science 310 (2005) 291-293.

DOI: 10.1126/science.1115800

Google Scholar

[6] Rashid, M.H. Mandal, T. K, Synthesis and Catalytic application of nanostructured silver dendrites, J. Phys. Chem. 111 (2007) 16750-16760.

DOI: 10.1021/jp074963x

Google Scholar

[7] Fan, M. Brolo, A. G, Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit, Phys. Chem. Chem. Phys. 11 (2009) 7381–7389.

DOI: 10.1039/b904744a

Google Scholar

[8] Rosi, N.L. Mirkin, C. A, Nanostructures in biodiagnostics, Chem. Rev. 105 (2005) 1547-1562.

DOI: 10.1021/cr030067f

Google Scholar

[9] Shrivastava, S. Bera, T. Singh, S.K. Singh, G. Ramachandrarao, P. Dash, D, Characterization of antiplatelet properties of silver nanoparticles, Acs Nano. 3(6) (2009) 1357-1364.

DOI: 10.1021/nn900277t

Google Scholar

[10] Riboh, J.C. Haes, A.J. Mc Farland, A.D. Yonzon, C.R. Van Duyne, R. P, A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion, J. Phys. Chem. B. 107 (2003) 1772-1780.

DOI: 10.1021/jp022130v

Google Scholar

[11] Zak, K. Ebrahimizadeh Abrishami, M. Abd-Majid, W.H. Yousefi Hosseini, S. M, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method, Ceram. Int. 37 (2011).

DOI: 10.1016/j.ceramint.2010.08.017

Google Scholar

[12] Li, S. Zhang, T. Tang, R. Qiu, H. Wang, C. Zhou, Z, Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles, J. Magn. Magn. Mater. 379 (2015) 226-231.

DOI: 10.1016/j.jmmm.2014.12.054

Google Scholar

[13] Wang, J. Wang, L. Sun, Y. Zhu, X. Cao, Y. Wang, X. Zhang, H. Song, D, Surface plasmon resonance biosensor based on Au nanoparticle in titania sol–gel membrane, Colloids and Surfaces B. Biointerfaces. 75(2) (2010) 520-525.

DOI: 10.1016/j.colsurfb.2009.09.029

Google Scholar

[14] Malhotra, A. Dolma, K. Kaur, N. Rathore, Y.S. Mayilraj, S. Ashish, Choudhury, A. R, Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas, Bioresour. Technol. 142 (2013) 727-731.

DOI: 10.1016/j.biortech.2013.05.109

Google Scholar

[15] Zhao, W. Zhang, Y. Du, B. Wei, Q. Zhao, Y, Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria, Bioresour. Technol. 142 (2013) 240-245.

DOI: 10.1016/j.biortech.2013.05.042

Google Scholar

[16] Carlson, C. Hussain, S.M. Schrand, A.M. Braydich-Stolle, L.K. Hess, K.L. Jones, R. L, Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species, J. Phys. Chem. B. 112(43) (2008) 13608-13619.

DOI: 10.1021/jp712087m

Google Scholar

[17] Dhanjal, S. Cameotra, S. S, Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil, Microbial Cell Factories. 9 (2010) 52–62.

DOI: 10.1186/1475-2859-9-52

Google Scholar

[18] Ahmad, A. Mukherjee, P. Mandal, D. Senapati, S. Khan, I. Kumar, R. Sastry M, Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus, J. Am. Chem. Soc. 124 (2002) 12108-12109.

DOI: 10.1021/ja027296o

Google Scholar

[19] Mirzadeh, S. Darezereshki, E. Bakhtiari, F. Fazaelipoor, M.H. Hosseini, M. R, Characterization of zinc sulfide (ZnS) nanoparticles biosynthesized by Fusarium oxysporum, Mater. Sci. Semicond. Process. 16(2) (2013) 374-378.

DOI: 10.1016/j.mssp.2012.09.008

Google Scholar

[20] Singaravelu, G. Arockiamary, J.S. Kumar, V.G. Govindaraju, K, A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville, Colloids Surf., B. 57(1) (2007) 97-101.

DOI: 10.1016/j.colsurfb.2007.01.010

Google Scholar

[21] Rajasulochana, P. Dhamotharan, R. Murugakoothan, P. Murugesan, S. Krishnamoorthy, P, Biosynthesis and characterization of gold nanoparticles using the alga Kappaphycus alvarezii, Int. J. Nanosci. 9 (2010) 511-516.

DOI: 10.1142/s0219581x10007149

Google Scholar

[22] Senapati, S. Syed, A. Moeez, S. Kumar, A. Ahmad, A, Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis, Mater. Lett. 79 (2012) 116-118.

DOI: 10.1016/j.matlet.2012.04.009

Google Scholar

[23] Mata, Y.N. Blázquez, M.L. Ballester, A. González, F. Muñoz, J. A, Gold biosorption and bioreduction with brown alga Fucus vesiculosus, J. Hazardous Mater. 166 (2009) 612-618.

DOI: 10.1016/j.jhazmat.2008.11.064

Google Scholar

[24] Jeeva, K. Thiyagarajan, M. Elangovan, V. Geetha, N. Venkatachalam P. (2014).

Google Scholar

[25] Karatay, S.E. Dönmez, G, Microbial oil production from thermophile cyanobacteria for biodiesel production, Appl. Energy 88 (2011) 3632-3635.

DOI: 10.1016/j.apenergy.2011.04.010

Google Scholar

[26] Stamplecoskie, K.G. Scaiano, J. C, Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles, J. Am. Chem. Soc. 132(6) (2010) 1825-1827.

DOI: 10.1021/ja910010b

Google Scholar

[27] Song, J.Y. Kim, B. S, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Biosyst Eng. 32 (2009) 79-84.

DOI: 10.1007/s00449-008-0224-6

Google Scholar

[28] Rai, A. Singh, A. Ahmad, A. Sastry, M, Role of halide ions and temperature on the morphology of biologically synthesized gold nano triangles, Langmuir. 22(2) (2006) 736-741.

DOI: 10.1021/la052055q

Google Scholar

[29] Naja, G. Bouvrette, P. Hrapovic, S. Luong, J.H. T, Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies, Analyst. 132 (2007) 679-686.

DOI: 10.1039/b701160a

Google Scholar

[30] Das, S.K. Khan, M.M.R. Guha, A.K. Das, A.R. Mandal A. B, Silver-nano biohybride material: Synthesis, characterization and application in water purification, Bioresour. Technol. 124 (2012) 495-499.

DOI: 10.1016/j.biortech.2012.08.071

Google Scholar

[31] Roy, B. Bharali, P. Konwar, B.K. Karak, N, Silver-embedded modified hyperbranched epoxy/clay nanocomposites as antibacterial materials, Bioresour. Technol. 127 (2013) 175-180.

DOI: 10.1016/j.biortech.2012.09.129

Google Scholar

[32] Sathishkumar, M. Sneha, K. Yun, Y. S, Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity, Bioresour. Technol. 101(20) (2010) 7958-7965.

DOI: 10.1016/j.biortech.2010.05.051

Google Scholar